Quantum-noise limited communication with low probability of detection

نویسندگان

  • Boulat A. Bash
  • Saikat Guha
  • Dennis Goeckel
  • Donald F. Towsley
چکیده

We demonstrate the achievability of a square root limit on the amount of information transmitted reliably and with low probability of detection (LPD) over the single-mode lossy bosonic channel if either the eavesdropper’s measurements or the channel itself is subject to the slightest amount of excess noise. Specifically, Alice can transmit O( √ n) bits to Bob over n channel uses such that Bob’s average codeword error probability is upperbounded by an arbitrarily small δ > 0 while a passive eavesdropper, Warden Willie, who is assumed to be able to collect all the transmitted photons that do not reach Bob, has an average probability of detection error that is lower-bounded by 1 2 − for an arbitrarily small > 0. We analyze the thermal noise and pure loss channels. The square root law holds for the thermal noise channel even if Willie employs a quantum-optimal measurement, while Bob is equipped with a standard coherent detection receiver. We also show that LPD communication is not possible on the pure loss channel. However, this result assumes Willie to possess an ideal receiver that is not subject to excess noise. If Willie is restricted to a practical receiver with a non-zero dark current, the square root law is achievable on the pure loss channel.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance of Target Detection in Phased-MIMO Radars

In this paper, the problem of target detection in phased-MIMO radars is considered and target detection performance of phased-MIMO radars is compared with MIMO and phased-array radars. Phased-MIMO radars combine advantages of the MIMO and phased-array radars. In these radars, the transmit array will be partitioned into a number of subarrays that are allowed to overlap and each subarray transmit...

متن کامل

A Novel Multi-user Detection Approach on Fluctuations of Autocorrelation Estimators in Non-Cooperative Communication

Recently, blind multi-user detection has become an important topic in code division multiple access (CDMA) systems. Direct-Sequence Spread Spectrum (DSSS) signals are well-known due to their low probability of detection, and secure communication. In this article, the problem of blind multi-user detection is studied in variable processing gain direct-sequence code division multiple access (VPG D...

متن کامل

Signal detection Using Rational Function Curve Fitting

In this manuscript, we proposed a new scheme in communication signal detection which is respect to the curve shape of received signal and based on the extraction of curve fitting (CF) features. This feature extraction technique is proposed for signal data classification in receiver. The proposed scheme is based on curve fitting and approximation of rational fraction coefficients. For each symbo...

متن کامل

Energy Detection of Unknown Signals over Composite multipath/shadowing Fading Channels

In this paper, the performance analysis of an energy detector is exploited over composite multipath/shadowing fading channels, which is modeled by Rayleigh-lognormal (RL) distribution. Based on an approximate channel model which was recently proposed by the author, the RL envelope probability density function (pdf) is approximated by a finite sum of weighted Rayleigh pdfs. Relying on this inter...

متن کامل

Effect of Underwater Ambient Noise on Quadraphase Phase-shift Keying Acoustic Sensor Network Links in Extremely Low Frequency Band

This study evaluates the impact of underwater ambient noise using seven real noise samples; Dolphin, Rain, Ferry, Sonar, Bubbles, Lightning, and Outboard Motor in three frequency ranges in extremely low frequency (ELF) band. The ELF band is the most significant bandwidth for underwater long-range communication. ELF band which is extended from 3 to 3000 Hz clearly, faces bandwidth limitation. Me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1403.5616  شماره 

صفحات  -

تاریخ انتشار 2014